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Using the modified rate equation the local measurement of the entanglement between two quantum-dot
qubits, with two isolated quantum-point-contact detectors, is investigated. It is shown that the measurement
process will induce the decaying of the two-qubit entanglement, as well as the electron-occupation probabili-
ties. Furthermore, we find an effective scheme to measure the two-qubit entanglement based on the local
measurement. It is demonstrated that the entanglement between the two qubits coupled by the strong Coulomb
interaction can be fully extracted according to the time-dependent variation rate of the detector current.
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I. INTRODUCTION

Quantum measurement �QM� of the entanglement, an im-
portant parameter for quantum information processing, is
considered to be one of the most crucial steps in the field of
quantum information.1 The methods of measuring quantum
entanglement are still being extensively investigated both
theoretically and experimentally. In general, based on the
working principles of detectors QM can be classified into
three kinds: the local measurement, the correlation one, and
the joint one. Intuitively, one would believe that the local
measurement cannot provide as much information as the
other two kinds of measurements because in the local mea-
surement scheme the detector only acts on part of the entire
system. Usually, it is believed that the whole entanglement
information can be extracted by the method of the joint mea-
surement. Therefore, much effort has been made to investi-
gate the joint measurement scheme.2–17 Tanamoto and Hu13

showed that the quantum-point-contact �QPC� current can be
used for reading out the results of quantum computation and
providing the information about the two-qubit entanglement.
To our knowledge, however, little attention has been paid to
the local measurement scheme.

In this paper, we design a local measurement scheme
based on the quantum-dot �QD� system, as shown in Fig. 1.
Each qubit is composed of two QDs �0 and 1� with one extra
electron residing in it. When the electron occupies QD 0 or
1, the corresponding qubit state is �0� or �1�. The qubit-i �i
=1,2� states can be detected by measuring the current flow-
ing through the nearby QPC i �detector�. Note that this setup
can be easily fabricated in two-dimensional electron gas
based on the current experimental nanotechnology.18 Accord-
ing to the method proposed by Gurvitz and Prager19 we first
derive the modified rate equation of the two-qubit system
and then investigate the QM of the entanglement between the
two qubits numerically. It is found that the electron-
occupation probabilities and the entanglement evolve as a
function of time. The mechanism of QM and the influences
on the qubits induced by QM are further studied in detail by
analyzing the currents flowing through the QPC detectors.
The measurement process is found to induce the decays of
both the electron-occupation probabilities and the entangle-
ment. Notably, we demonstrate that the evolution of the en-

tanglement can be fully extracted in some case from the
time-dependent variation rate of the measured QPC currents.
This indicates that in certain cases, the entanglement mea-
surement can be accomplished by using the simple local
measurement scheme alone, rendering the joint measurement
unnecessary.

The rest of this paper is organized as follows. In Sec. II,
we give the Hamiltonian of the two-qubit system and the
modified rate equations. An analytical analysis is performed
in Sec. III on the time-dependent evolution of the two qubits
in the absence of detectors. Then in Sec. IV the numerical
results and discussions about the two qubits coupled by the
different coupling strengths are presented. Finally, a conclu-
sion is outlined in Sec. V.
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FIG. 1. �Color online� Schematic illustration of the quantum
measurement of the entanglement between two quantum-dot qubits
by two QPC detectors placed above. Each qubit is composed of two
QDs labeled by 0 and 1. The interdot coupling between two QDs in
each qubit is shown by the solid line, and the dashed lines denote
the interdot Coulomb interactions. The quantum entanglement be-
tween qubit 1 and qubit 2 can be measured by the currents I1 and I2

flowing through the two detectors QPC1 and QPC2 with the biased
voltages V1 and V2. The right upper picture shows the Fermi levels
EF

L and EF
R of the detector in the initial vacuum state, and the arrow

denotes the electron tunneling from the left lead to the right one.
Moreover, shown in the right lower part are the four possible bases
�00�, �01�, �10�, and �11� of the two qubits where the filled circle
denotes that there is one electron localized in it.
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II. FORMULATION

The QD two-qubit system, schematically shown in Fig. 1,
including two QPC detectors can be expressed by the Hamil-
tonian H=HS+H1D+H2D+HI, in which the two-qubit Hamil-
tonian is

HS = �
i,j

�Eijcij
† cij + U1i,2jn1in2j� + �

i

�i�ci0
† ci1 + h.c.� .

�1�

Here Eij denotes the ground-state energy of the jth QD in the
ith qubit. cij

† �cij� is the creation �annihilation� operator of the
electron on the energy level Eij, and nij �cij

† cij is the corre-
sponding particle number operator. �i represents the interdot
coupling in the ith qubit, and U1i,2j denotes the Coulomb
repulsion interaction between the two electrons in the two
qubits. The Hamiltonian of the detector placed above qubit i
is

HiD = �
l

Eilcil
†cil + �

r

Eircir
† cir + �

l,r
�ilr�cil

†cir + h.c.� , �2�

while the interaction between the two qubits and the two
detectors can be modeled by

HI = �
lr

���1lrn10c1l
† c1r + ��2lrn20c2l

† c2r + h.c.� . �3�

Here cil
�†� and cir

�†� represent the creation �annihilation� opera-
tors of the left-lead energy Eil and the right-lead energy Eir in
the ith detector, respectively. �ilr is the coupling between the
energy levels Eil and Eir. ��ilr denotes the coupling variation
in the ith detector when the qubit electron enters QD-0 from
QD-1. The wave function describing the entire system can be
expressed as19

���t�� = �
ij
�bij�t�c1i

† c2j
† + �

lr

bijlr�t�c1i
† c2j

† c1r
† c1l

+ �
pq

bijpq�t�c1i
† c2j

† c2q
† c2p

+ �
lrpq

bijlrpq�t�c1i
† c2j

† c1r
† c2q

† c1lc2p + ¯��0� . �4�

Here, b
¯

�t� are the amplitudes of the probabilities finding
the system in the states defined by the corresponding creation
and annihilation operators. The so-called initial vacuum state
�0� may be described in the following way: �i� the energy
levels of the left and the right leads are filled up to their
Fermi energy levels with EF

L �EF
R as shown in Fig. 1, and �ii�

four QDs in two qubits are kept empty. Throughout this re-
search we consider the transport properties at zero tempera-
ture. The quantum evolution of the whole system is de-

scribed by the time-dependent Schrödinger equation i��̇�
=H��� and the corresponding density matrix is given by
��t�= ���t��	��t��. In the four-dimensional Fock space com-
posed of �a� �00�, �b� �01�, �c� �10�, and �d� �11� �see Fig. 1�,
where, for example, �01� denotes the qubit-1 electron occu-
pies QD-0 and that of qubit-2 stays at QD-1, we can derive
the differential equations of the reduced density matrix ele-
ments according to the procedure proposed by Gurvitz and
Prager.19 The diagonal matrix elements are expressed as

�̇aa = i�1��ac − �ca� + i�2��ab − �ba� , �5a�

�̇bb = i�1��bd − �db� + i�2��ba − �ab� , �5b�

�̇cc = i�1��ca − �ac� + i�2��cd − �dc� , �5c�

�̇dd = i�1��db − �bd� + i�2��dc − �cd� , �5d�

and the nondiagonal ones are20

�̇ab = i�Eba + Uba��ab + i�1��ad − �cb� + i�2��aa − �bb�

− �2d�ab/2, �6a�

�̇ac = i�Eca + Uca��ac + i�1��aa − �cc� + i�2��ad − �bc�

− �1d�ac/2, �6b�

�̇ad = i�Eda + Uda��ad + i�1��ab − �cd� + i�2��ac − �bd�

− ��1d + �2d��ad/2, �6c�

�̇bc = i�Ecb + Ucb��bc + i�1��ba − �dc� + i�2��bd − �ac�

− ��1d + �2d��bc/2, �6d�

�̇bd = i�Edb + Udb��bd + i�1��bb − �dd� + i�2��bc − �ad�

− �1d�bd/2, �6e�

�̇cd = i�Edc + Udc��cd + i�1��cb − �ad� + i�2��cc − �dd�

− �2d�cd/2. �6f�

For convenience we have defined the dephasing rate �id

= �
Di−
Di��
2, where Di=2�	L	R��ilr�2Vi or Di�

=2�	L	R��ilr� �2Vi is the transition rate of an electron hopping
from the left lead to the right one when the electron stays in
QD-0 or QD-1 of qubit i. Here, 	L and 	R are the densities of
states for the left and right leads, respectively, and Vi denotes
the voltage bias between the left and right leads of QPC-i.
Furthermore, according to the general current formula19

Ii�t�=dQiR�t� /dt=�nn��̇aa
n + �̇bb

n + �̇cc
n + �̇dd

n �, with QiR�t� be-
ing the total charge in the right lead and �



n being the elec-
tron number resolved density matrix element, we can obtain
the current flowing through the two detectors21

I1 = D1���aa + �bb� + D1��cc + �dd� , �7a�

I2 = D2���aa + �cc� + D2��bb + �dd� . �7b�

On the other hand, it has been demonstrated that nonposi-
tivity of the partial transposition is a necessary and sufficient
condition for describing the entanglement of a mixed state.22

For a two-qubit system described by the density operator �,
the negativity criterion for the entanglement of the two qu-
bits is given by the quantity E=−2�iui

− where the sum is
taken over the negative eigenvalues ui

− of the partial transpo-
sition of the density matrix �. The value of E=1 corresponds
to the maximum entanglement between the two qubits while
E=0 indicates that the two qubits are separable.22,23
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III. DYNAMICS OF COUPLED QUBITS

First we discuss the time-dependent properties of the two
coupled qubits in the absence of detectors. For the isolated
two coupled qubits, the corresponding Hamiltonian can be
represented by HS in Eq. �1�. Using the basis vectors includ-
ing �a�, �b�, �c�, and �d�, we can expand the wave function of
the two-qubit system as ���t��= fa�a�+ fb�b�+ fc�c�+ fd�d�. By

substituting HS and ���t�� into i��̇�t��=HS���t��, we can
easily obtain the coupled linear equations

i ḟa = ��a + Ua�fa + �1fc + �2fb, �8a�

i ḟb = ��b + Ub�fb + �1fd + �2fa, �8b�

i ḟ c = ��c + Uc�fc + �1fa + �2fd, �8c�

i ḟd = ��d + Ud�fd + �1fb + �2fc. �8d�

Here we introduce Ua=U00,10, Ub=U00,11, Uc=U01,10, and
Ud=U01,11 for convenience. In the limit of Ua,b,c,d=0, we can
obtain the time-dependent evolution formulation

�
fa�t�
fb�t�
fc�t�
fd�t�

� =
1

2�
r2 r4 r3 r1

r4 r2 r1 r3

r3 r1 r2 r4

r1 r3 r4 r2

��
fa�0�
fb�0�
fc�0�
fd�0�

� , �9�

where we define r1=cos���+�t�−cos���−�t�, r2=cos���+�t�
+cos���−�t�, r3=−i sin���+�t�− i sin���−�t�, and r4
=−i sin���+�t�+ i sin���−�t� with ����1��2 and the ini-
tial values fa,b,c,d�0�.

Then we consider the time-dependent evolution in the
other limit of Ua,b,c,d→
. We can obtain the relation


 fb�t�
fc�t�

� = 
 cos �t i sin �t

i sin �t cos �t
�
 fb�0�

fc�0�
� , �10�

in the initial conditions fa�0�= fd�0�=0, and


 fa�t�
fd�t�

� = 
 cos �t − i sin �t

− i sin �t cos �t
�
 fa�0�

fd�0�
� , �11�

in the case of fa�0�= fd�0�=0. Here � is related to �1,2 and
�U as �=2�1�2 /�U in the structure designed in Fig. 1. For
simplicity, we have assumed that the four QDs are localized
at the four vertices of a rectangle with length a and width b.
Consider for example the evolution of the two qubits from a
pure state �b� �fb=1 and fa,c,d=0� with equal interdot cou-
plings �1=�2=1. From Eq. �9� we can find that the prob-
abilities �fb,c�2 in the basis vectors �b ,c� will evolve in the
period of �, while the oscillation periods of the probabilities
�fa,d�2 are � /2. These oscillations with the period of � or � /2
are just a trivial effect induced by the partition of the usual
Rabi oscillation of each qubit in the basis vectors �a ,b ,c ,d�.
In the other limit case where the interdot Coulomb interac-
tion is strong enough, the probabilities �fa�2= �fd�2�0 and the
probabilities �fb�2=cos2 �t and �fc�2=sin2 �t, indicating the
oscillation period is ��U / �2�1�2�. It can be interpolated
that the amplitudes of �fa�t��2 and �fd�t��2 will decrease to

zero with increasing �U and the oscillation periods of �fb�t��2
and �fc�t��2 will become ��U / �2�1�2�. This clearly demon-
strates that the interdot Coulomb interactions will have an
effect on the oscillation amplitudes and the periods. For a
general �U, it is difficult to derive analytical results, and
therefore a numerical study will be carried out in Sec. IV.

IV. NUMERICAL RESULTS

In this section we numerically study the dynamics of the
two-qubit system based on the modified rate equations and
explore how to extract the entanglement from the currents
flowing through the QPC detector placed nearby. In view of
the initialization of the qubit states and the Coulomb inter-
action between the two electrons in two qubits, here we as-
sume that the initial state is chosen to be �bb�0�=1 and all
the other density matrix elements are kept to be zero at the
time of t=0. This means that the two-qubit system will
evolve from a pure state to a mixed one. The Coulomb in-
teractions denoted by the dashed lines between the two near-
est QDs are chosen to be U10,20=U11,21=
2U10,21=
2U11,20
�U, and the interdot couplings �1=�2=1.0 are used as the
energy unit. In our calculation, we choose D1=D2�D and
D1�=D2��D�=0.9D for clarity and the system temperature T
is kept at 0 K.

A. Qubit dynamics without detector

In order to understand how to measure the two-qubit en-
tanglement as well as the measurement-induced influences
on the qubit information, it is instructive to examine in ad-
vance the dynamics of the two-qubit system in the absence
of detectors �D1,2=0�. First of all, the time-dependent evolu-
tions of the electron-occupation probabilities �bb and �cc for
the different interdot Coulomb interactions U are plotted in
Fig. 2. In the case of U=0, according to the relation in Eq.
�9� the probabilities �bb�t�= �cos�2t�+1�2 /4 and �cc�t�
= �cos�2t�−1�2 /4 exhibit the oscillations with a period of �.
This oscillation, the well-known Rabi oscillation, is attrib-
uted to the interdot coupling, which induces the qubit elec-
tron to tunnel back and forth between QD0 and QD1. When
the Coulomb interaction U becomes nonzero, obvious
changes appear in the oscillations of �bb and �cc. For the
moderately strong Coulomb interaction �e.g., U=5 and 10�
the oscillations exhibit complex patterns, which manifest the
correlation effect induced by the interdot Coulomb interac-
tions. With the further increase in U, the simple pattern of the
periodical oscillations is restored for both �bb and �cc. This
can be easily understood from a physical point of view. The
interdot Coulomb interactions are inclined to force the two-
qubit electrons to occupy the diagonal QDs separated by a
larger interdot distance. To see the oscillations clearly, the
Fourier transforms of the curves of �bb for different U are
performed in Fig. 2�c�. It is evident that the oscillation for
U=0 includes two main components with frequencies f =1
and 2, just as indicated by relation �9�. When U becomes
nonzero, the oscillation pattern changes abruptly and three
main components with different frequencies are observed. As
U increases further, the amplitudes of the two higher-f oscil-
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lations become smaller and the corresponding frequencies
become much higher, while the frequency of the lowest-f
oscillation decreases continuously. In the large U limit, the
two higher-f components diminish and only the lowest f sur-
vives. Obviously, the decrease in the frequency of the
lowest-f oscillation indicates the increase in the oscillation
period when U becomes strong. It should be emphasized
that, in sharp contrast to the periodical oscillation of U=0,
this kind of oscillation is closely dependent on the interdot
Coulomb interaction U.

Furthermore, the oscillations of �aa or �dd corresponding
to the case of Fig. 2 are shown in Fig. 3. For U=0, the
probability �aa�sin2�2t� or �dd�sin2�2t� exhibits the oscil-
lations with a period of � /2, which is due to the interdot
coupling. When the interdot Coulomb interaction becomes
nonzero, it is clear that �aa and �dd still oscillate periodically
even in the case of moderately strong U. However, the period

of the oscillation is found to become smaller as U increases.
Meanwhile, the oscillation amplitude also becomes much
smaller. When U becomes sufficiently strong, as it should be,
the amplitudes of �aa and �dd are inclined to approach zero,
indicating that the two electrons in the two qubits cannot
simultaneously occupy the state �00� or �11� anymore. This
indicates that the interdot Coulomb interactions prevent the
two electrons from occupying the nearest QDs. It should be
emphasized that the interdot Coulomb interaction U does not
induce complex oscillation patterns in the �aa�t� and �dd�t�
curves, which are different from the case of �bb and �cc.

Next, we turn to investigate the entanglement between the
two qubits based on the nonpositive partial transpose �NPT�.
Figure 4�a� shows the time-dependent evolutions of the
quantum entanglement for the different interdot Coulomb in-
teractions U. When the Coulomb interaction U=0, the cor-
responding entanglement is always zero, indicating that there
is no entanglement between the two qubits. Certainly this
should be the case since there is no interaction between the
two qubits. When U becomes nonzero, the entanglement ex-
hibits many kinds of complex oscillations. For the cases of
the moderately strong Coulomb interactions �U=5, 10, and
20� the entanglement shows seemingly irregular evolution as
the time goes on. However, with further increasing U, the
evolution of the entanglement becomes much more regular
and exhibits the periodical oscillation. This demonstrates that
entanglement is strongly influenced by the interaction be-
tween the two qubits. Let us consider the details of the en-
tanglement for U=40 in Fig. 4�b�. It is evident that the en-
tanglement shows the small-amplitude oscillations. To
understand what causes this kind of oscillation, the evolution
of �aa is also plotted. It is clear that both the entanglement
and �aa oscillate in phase.24 Therefore, we believe this oscil-
lation is mainly caused by the small-amplitude undulations
in �aa and �dd and in �bb and �cc �see Fig. 4�c��. Further-
more, the large-amplitude oscillation is examined also, as
shown in Fig. 4�c�. It can be seen that when the entanglement
takes the largest value of 1 the probabilities of �bb and �cc
are equal to 0.5. At this moment the two qubits are right in
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FIG. 2. �Color online� Time-dependent electron-occupation
probabilities �a� �bb and �b� �cc with D=0. From bottom to top, the
curves correspond to U=0, 5, 10, 20, 40, 80, and 160, respectively,
which are shifted upward by 0, 1, 2, 3, 4, 5, and 6 for clarity. The
corresponding Fourier transforms of �bb�t� are shown in �c�, and the
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the maximally entangled Bell state. In addition, it can also be
seen that at a certain time the entanglement takes the value of
0. This indicates that there is no entanglement between the
two qubits. By inspecting these positions with E=0, it can be
found that only one diagonal element ��bb or �cc� equals the
value of 1. This indicates that the system is in a pure state.
Similar phenomena can be found in the large U limit �see
Fig. 4�d��. However, the small-amplitude oscillations in the
entanglement curves disappear. At the same time, the small-
amplitude oscillations in the curves of �ii �i=a ,b ,c ,d� also
will vanish. This is exactly the reason why the entanglement
curve becomes smooth.

B. Entanglement measurement

In this section we explore the scheme of extracting the
quantum entanglement by means of the currents flowing
through the two nearby QPC detectors. For convenience,
weak measurement condition D�=0.9D is still retained to
minimize the effect of the decoherence in both the weak
�U=5� and strong �U=80� Coulomb interaction cases. First,
the corresponding time-dependent evolutions of the en-
tanglement are plotted in Figs. 5�a� and 5�b�, respectively.
We can see that the entanglement in the case of D�0 will
evolve with the same period as that of D=0, indicating that
the oscillation period of the entanglement is independent of
the measurement process. However, the oscillation amplitude
decays when the time t becomes large and, moreover, will
decay more quickly for a larger D. This demonstrates that the
measurement process will induce the decay of the entangle-
ment. Second, we plot the time-dependent variation rate of
the corresponding current ��I1 /�t� for D�0 �see Figs. 5�c�
and 5�d��. Let us pay attention to the strong U=80 case �see
Figs. 5�b� and 5�d��. We can see that the current variation
rate shows the high-frequency oscillation with a long-period
modulation oscillation. Very surprisingly, this long-period
modulation of ��I1 /�t� shows a perfect in-phase evolution
with the corresponding entanglement. They approach the
maximum or minimum position simultaneously. This indi-

cates that we can obtain the maximal or minimal entangle-
ment information easily from the ��I1 /�t� curves. By a fur-
ther comparison one can find that the extra evolution details
of the entanglement information and the measured-induced
dephasing can also be obtained from ��I1 /�t�. Therefore, the
entanglement of the two strongly coupled qubits can be ex-
tracted based simply on the local measurement. As a conse-
quence we have found an effective method to measure the
two-qubit entanglement information.

In the weak Coulomb interaction case of U=5, however,
this kind of correspondence between the entanglement and
��I1 /�t� can no longer be found and only limited information
about the entanglement can be extracted. This indicates that
this measurement method is not quite valid in the weakly
coupled two-qubit system. One may wonder why it works
well only in the strongly coupled two-qubit case. As a matter
of fact its physical picture is particularly intuitive. When the
Coulomb interaction is strong enough, the two-qubit elec-
trons merely occupy states �01� and �10� with probability
occupying state �00� or �11� being zero, which is reduced to
the measurement of the single qubit. Hence, if the interaction
is strong enough, the entanglement can be measured by a
local measurement.

Can the two-qubit entanglement be directly extracted
from the QPC currents? In Fig. 6 further investigation is
conducted to discover the relationship between the currents
I1,2�t� and the two-qubit entanglement. First, the weak inter-
action U=5 case is considered in Fig. 6�a�. By comparing the
entanglement and the corresponding currents, one can find
that although both of them show the seemingly irregular evo-
lution as the time goes on, the minimal entanglement posi-
tions are exactly at the places where the peaks or the troughs
of the currents appear. This correspondence relation between
the currents and the entanglement is still correct even at U
=80 as clearly shown in Fig. 6�b�. However, it is also diffi-
cult to extract more information directly from the currents.
Therefore, we can only extract partial information of the
two-qubit entanglement according to the detector currents in
both the weak and strong U cases. One may wonder what on
earth the detector currents reflect. Therefore, we plot the
curves of the current I1�t� and the probability �0=�aa+�bb
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which denotes the electron occupying QD0 in qubit 1 in
Figs. 6�c� and 6�d�, respectively. It is clear that no matter
how strong the Coulomb interaction U is, the current I1�t�
always oscillates in the same way as �00 does. This verifies
that the detector current I1, in nature, completely reflects the
electron-occupation probability in QD0 of qubit 1. In addi-
tion, it should be emphasized that, as estimated in Ref. 21,
the oscillation amplitude of the current may be tuned in pA
range and can be measured experimentally.

V. CONCLUSION

In conclusion, quantum measurement of the entanglement
between two quantum-dot qubits has been investigated using

the modified rate equations. It is found that the measurement
process will induce the decaying of the quantum entangle-
ment and the electron-occupation probabilities. Especially,
our results indicate that when the two qubits are coupled by
the sufficiently strong interactions, the entanglement between
two qubits can be fully extracted by the local measurement
via the current flowing through the QPC detectors.
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